Unraveling Oxygen Reduction Kinetics on SOFC Cathodes Using Patterned Electrodes and X-Ray Techniques

Lincoln Miara, Jacob Davis, Uday Pal, Karl Ludwig, Soumendra Basu, and <u>Srikanth Gopalan</u>

<u>Phase I accomplishments (mainly focused</u> on LSM):

- Determined that "surface path" is ~4 fold less resistive than "bulk path".
- **Orrection** Modified the SSM model developed by Mitterdorfer *et al.* to account for surface potential ($\Delta \chi$) and implemented in Matlab.
- Estimated temperature and pO_2 dependence of: D_s , k_{ad} , k_{des} , k_f^{eq} , k_b^{eq} , and surface coverage (θ).
- At temperatures below 700 °C was co-limited by diffusion and adsorption. At high temperatures charge transfer contributes significantly to rate.
- Low scatter between samples suggests that samples were successfully fabricated, and model correctly accounts for the geometry changes.
- Used TXRF to measure surface compositions of LSM thin film cathodes
- L.Miara, J.N.Davis, S.Basu, U.B.Pal, and S.Gopalan, "Application of a State-Space Model to Patterned Cathodes of (La0.87Ca0.13)0.95MnO3", J.Electrochem.Soc, 158 B1523 (2011)

Work covered in this year's SECA workshop

 Measurement of Electrode Kinetics on LSCF electrodes using micropatterning

 Surface spectroscopy of LSCF thin films using HAXPES

Haweoexamcinde "Burlfa Petpath":

LSCF-6428: EIS results I_{TPB} =50 cm⁻¹, 800°C

Primary Evidence of Mixed Conduction LSCF-6428: 1/R_c vs. TPB length

LSCF vs. LCM – far weaker TPB dependence

Goals:

- 1. Develop model to account for:
 - surface transport
 - bulk transport
 - surface exchange
- 2. Combine with experimental data to Identify influence of each on overall rate.

Use 2-D Model: Geometry

Model Assumptions

- LSCF-6428 has high electron mobility: uniform electron electrochemical potential.
- Overpotential at interface given by Nernst Equation:

$$4F\eta = RT \ln f_{O_2}^{\text{solid}}|_{y=0} - RT \ln p_{O_2}$$

- Where $f(T,x_v)$ is the fugacity in the solid and $x_v = \delta/3$
- No gas phase limitation
- Oxygen exchange is driven by bulk vacancy concentration changes away from equilibrium with gas phase, but ion exchange across cathode interface considered equilibrated
- Electrolyte resistance and lead wire inductance is subtracted directly from experimental data.

Parameters in model:

$$R_D = \frac{RT}{8F^2} \frac{(W+H)}{c_o x_v^o D_v} \quad t_D = \frac{W^2}{A^o D_v} \quad \longrightarrow$$
$$\sigma_M = \omega_M t_D$$

Both functions of D_v : (intrinsic vacancy diffusivity)

0 -

$$\kappa = \frac{4R_o W}{c_o x_v^o D_v} \equiv \frac{\text{surface oxygen exchange}}{\text{bulk oxygen diffusion}} \quad v = \frac{\Gamma_o \theta_{O_s}^o D_{O_s}}{W c_o x_v^o D_v} \equiv \frac{\text{surface oxygen diffusion}}{\text{bulk oxygen diffusion}}$$

$$\phi = \frac{A^o}{A_{O_s}^o} \frac{\Gamma_o \theta_{O_s}^o}{W c_o x_v^o} \equiv \frac{\text{surface oxygen storage}}{\text{bulk oxygen storage}} \longrightarrow \text{Set equal to zero}$$

Numerical Model:

- Solved using Gauss-Siedel Method, with a tolerance of 10⁻⁵
- Implemented in Matlab, usually converges in about 30 s (per σ), with mesh size of 200 (width) by 100 (height).
- Boundary conditions: flux/reaction boundary on top and right wall
- Fixed (potential) at cathode/electrolyte interface
- No flux at symmetrical (left wall) boundary.

Model Predictions – Oxygen Vacancy pertubation:

- At high frequency, disturbance limited to interface.
- At low frequency extends through entire cathode.
- With surface diffusion, extends up wall faster

Generate Nyquist Plots from Model:

NOTE:

EIS results – $I_{TPB} = 50 \text{ cm}^{-1}$

Fitting Routine:

Have two known (R_M and ω_M) and 3 fitting parameters (D_V , κ , and ν):

Fitting Results (I_{TPB} = 430 cm⁻¹)

Conclusions from LSCF-6428:

- Numerical model based on work by Adler's group but modified to account for entire surface activation, and different geometry.
- First time applied to well-defined patterns: increases confidence in fitting results.
- Surface diffusion is equally (to bulk diffusion) *transport* path at highest temperatures and pO₂: evidence from TPB dependence of 1/R_M and from fitting model results (v > 1).
- \Box Surface exchange high at all measured T and pO_{2.}
- L.Miara, S.Basu, U.Pal, and S.Gopalan, "2D Numerical Model for Identification of Oxygen Reduction Reaction Mechanisms in Patterned Cathodes of La0.6Sr0.4Co0.2Fe0.8O3-δ", J.Electrochem.Soc. (In Print)

X-ray spectroscopy techniques

Energy Resolving Fluorescence

Total Reflection X-ray Fluorescence (TXRF)

• Total Reflection X-ray Fluorescence (TXRF) data was taken as a function of angle. Probing with an incident angle larger than the critical angle α_c , x-rays penetrate the entire sample and bulk properties are measured.

Energy

 At low angle the beam is totally reflected, and only the topmost nanometers of the film fluoresce.

LSM on NGO as-deposited

$$N(\theta) \propto I(\theta)$$

• $N_{Sr} = \alpha I_{Sr}$, $N_{La} = \beta I_{La}$, $N_{Mn} = \gamma I_{Mn}$

• Want
$$\frac{N_{Sr}}{N_{Sr}+N_{La}}$$
 , $\frac{N_{Sr}+N_{La}}{N_{Mn}}$

$$R_1 = \frac{N_{Sr}}{N_{Sr} + N_{La}} = \frac{I_{Sr}}{I_{Sr} + \frac{\beta}{\alpha}I_{La}} \text{ Define } C_1 = \frac{\beta}{\alpha}$$

$$C_1 = \frac{I_{Sr}(1-R_1)}{R_1 I_{La}}$$
 For $\theta > \alpha_c$, R_1 =0.21

Can now plot R_1 for all angles.

LSM – TXRF *in-situ* measurements

A-site to B-site for LSM. Change upon anneal. Quenched agrees with high T.

LSCF – TXRF in-situ measurements

Above the critical angle the bulk value is unchanging. Below the critical angle an increase in the ratio value indicates a higher strontium content. At 800°C the surface is still evolving over eight hours.

Understanding TXRF compositional changes

 We assume that the near-surface behaves in a bulk-like way that allows for a bulk defect model explanation.

 Using the Defect model to relate surface concentration changes to defect concentration.

LSM-20 Defect Chemistry Model for an Electronic Conductor

Electroneutrality:

 $2[V_{0}^{"}] + [Mn_{B}^{"}] = [Mn_{B}^{'}] + [Sr_{A}^{'}] + 3[V_{A}^{'''}] + 3[V_{B}^{'''}]$

A-site balance:

$$[La_{A}^{x}] + [Sr_{A}^{'}] + [V_{A}^{'''}] = 1$$

B-site balance:

$$[Mn_B'] + [Mn_B^x] + [Mn_B] + [V_B'''] = 1$$

Shottky-reaction: $K_S = [V_0^{..}]^3 \cdot [V_A^{\prime\prime\prime}] \cdot [V_B^{\prime\prime\prime}]$

Redox reaction:

$$K_{r} = \frac{[Mn_{B}^{x}] \cdot [V_{0}^{..}] \cdot PO_{2}^{1/2}}{[Mn_{B}^{.}] \cdot [O_{0}^{.x}]}$$

B

Charge disproportionation: $K_i = \frac{[Mn'_B] \cdot [Mn_B]}{[Mn^x_B]^2}$

O-site balance:

$$[O_0^x] + [V_0^{"}] = 3$$

X-Ray Photoelectron Spectroscopy

Hard X-ray Photoelectron Spectroscopy HAXPES

- Overcomes surface contamination problems of soft x-ray spectroscopies.
- Tunable penetration depth.
- Identify Cation states as a function of probing depth.
- Apply defect model to Cation states.

LSCF Sr3p

Incident photon energy of 3000eV compared to 2140eV.

AFM Surface Evolution

As Deposited

800°C 5 hours Quench

Summary

- Using TXRF to do composition analysis of surfaces versus bulk
- Using HAXPES to probe electronic structure of surfaces versus bulk
- Goal converge on a complete picture of the defect chemistry of the structure versus the bulk
- Correlate results with the kinetics of oxygen reduction measured on patterned thin films

Acknowledgments

- Gratefully acknowledge continued support from the SECA program (DE-NT0004104)
- Stimulating discussions with the NETL SECA team Rin Burke, Briggs White, Kirk Gerdes, and Harry Abernathy
- Scientific instrumentation support at EMSL-PNNL from Lax Saraf and Tiffany Kaspar.
- NSLS facilities at Brookhaven National Lab.

